
Ke clean

Sciifii
Credits
Sciifii has been done by TeamWiigen:

- Coders: Arasium, Teton and Fanta
- Testers: JeanMi, Jicay, Thetataz, Vlad, Oranda (and many others)

Greetings
Waninkoko, for all job he’s done on the Wii and because he has always answered/helped us
when we need some infos about his cios.
Da_letter_a and Damysteryman for their cioscorp/Darkcorp knowledge.
Everybody who has helped us and we have forget J
Contacts:
teamWiigen@gmail.com

Table of Contents
Introduction 3
Changelog 3
How to use Sciifii 4

Prerequisites 4
Installation methods 4
Sciifii modes 4
Sciifii options 4
Error resolutions 5

Sciifii customization 5
Global structure 5
Log section 6
Files section 7
Modes section 7
Options section 8
Steps section 8

TitleDowngrader 8
IOS reloader 8
Cios installer 9
Composite installer 12
Title task 12

mailto:teamwiigen@gmail.com


File downloader 12
Wad Batch installer 13
File system manipulation 13

Introduction
Birth of Sciifii
In 2009, Arasium has done a guide to helps everybody who wants to hack their Wii. This
guide was quite good and like every good job, a lot of people has copy/paste it on warez
boards or other forums without including links to the original guide (for French people, you
can find on Wiigen forum, under the member tutorial section).
But, the worst isn’t these thieves. It is the noobs who aren’t able/don’t want to read the guide.
As everybody knows, always repeating the same thing is very boring. So Arasium has the
idea of a homebrew that will do the entire job. No more stupid questions (after Sciifii v1 or
v2 release, we realize that we can’t avoid stupid questionsJ), no more reading and overall no
need to always update the guide.
So the Sciifii v1 project was born. This first version wasn’t very powerfull due to a lack of
configuration, some bugs etc…. But now, Sciifii has evolved!
Enjoy our job
The goal of Sciifii
A lot of people see a hack tool when they take a look to Sciifii. But Sciifii isn’t only this. Our
goal was to create a very flexible application that can be used for a lot of things.
So yes, Sciifii is provided with a configuration file wich will hack your Wii. But it is very
easy to create more apps (for example of firmware downgrader can be done very quickly).
Actually, we can describe Sciifii has a tiny task sequencer. All the application can be
modified in the xml. And this is the power of Sciifii.

Changelog

• Added a log system
• The cios installer was rewritten
• Cmios included (done with the new ciosInstaller)
• Cios r19 base 37 added in slot 250
• The libs were rewritten
• Now, fully customizable in the xml. No more embedded datas.
• Improved the config.xml

▪ Removed the flags (it was a stupid idea done for the v2)
▪ CorpInstaller and SystemUpdater have their one configuration (so

you can use them more than once)
▪ Added a file system step
▪ Added a file manager to export some patches/datas from the

executable
• And some bug fixed J



How to use Sciifii

Prerequisites
First, you need an internet connection. Sciifi use some files we can’t give you because there
are copyrighted. But Sciifii can download them from Nintendo update servers. You can use
your Wii internet connection or a computer.
Then you need a brain (I say that, because some people will always try to not use it), an sd
card and a Wii J

Installation methods
Sciifii needs to download items from the network. So you can launch Sciifii and he will
automatically download all the needed files for you.
But keep in mind that you can also use our pc application to download these files. In fact,
using the pc tool is a lot quicker. So perhaps you will prefer our pc app (or perhaps your Wii
isn’t connected to the networkJ)

Sciifii modes
When you start Sciifii you will see a menu. This menu will show all the available modes. In
Sciifii, a mode is a default installation option set. In fact, each mode will automatically
activate/deactivate some options.
We provide these modes for users who don’t care about how Sciifii does his job. But we
suggest you to take a look to the advanced mode (at least, just to have an idea on what Sciifii
really does on your Wii)

- Hack your Wii ! (Light Mode): this will only install the waninkoko cios rev17b
and the priiloader.
- Hack your Wii ! (Full Mode with LoaderGX): This will do the same that lite
mode but it will also install the GX USB Loader.
- Hack your Wii ! (Full Mode with Wiiflow): This will do the same that lite mode
but it will also install Wiiflow.
- Unhack your Wii: This mode will remove all cios from your Wii and will
update it to firmware 4.2. No channel will be removed. So I suggest users to remove
their channels before using this (with any title delete for example). Once the
uninstallation done, you can remove the HBC and/or bootMii with Hackmii installer.

Sciifii options
Like explained just above, Sciifii modes will only active some options. You can see this
options in the advanced menu. I will describe here every option you can find in the config file
provided with sciifii. You can do a custom installation selecting the required options in the
advanced menu.

- Restore Trucha Bug : This will restore the trucha bug in the ios36. The ios 36
used as base to create the trucha ios is the latest version.
- Install cios 38 rev17b: This will install the cios38 rev17b from waninkoko. The
installation will be done under the ios36. So you need an ios36 with the trucha bug (or
use the first option).
- Update: This will update you Wii to the firmware 4.2. The installation is done
under the cios249 (so be sure to have it or activate the cios option). The cioses (ie
249, 250 etc..) won’t be modified.



- Remove the cioses: This will removed the cioses with the original ioses from
Nintendo.
- Priiloader: this will install the priiloader and the hack.ini file on your sd card.
- Corp: It will install the cioscorp/darkcorp on your Wii. This includes the cmios,
but, if you want the cios56 and 58, you need to extract them from GH5/RB and a
game wich used the cam.
- GXLoader: It will install the GX Loader on your sd and the GX Loader channel
on your Wii.
- Wiiflow: The same as GX Loader but for Wiiflow.

Here is a summary of the options activated in each mode:
Hack your Wii ! (Light Mode) TBR + cIOS + Preloader
Hack your Wii ! (Full Mode with LoaderGX) TBR + cIOS + Preloader + GXLoader
Hack your Wii ! (Full Mode with Wiiflow) TBR + cIOS + Preloader + Wiiflow
Unhack your Wii TBR + cIOS + Update + Uninstall

Error resolutions
Sciifii can work on a lot of Wii. But, it can encounter some problems with some
configurations. Generally, these problems are due to an old cioscorp.
The cioscorp increase the ioses revision number to their max value. So we can’t manipulate
them easily.
In case of problems during the first installation phase of Sciifii (ie the TBR), we suggest you
to use advanced mode and select this items: cIOS, update (to remove the old corp), Preloader,
corp (if you want to reinstall it), and an usb loader.
If the error persists, you can send us a mail with your ip. We will take a look at our logs in
order to identify what happens.

Sciifii customization
As already explained, Sciifii is just a task sequencer. We will see here how to modify the
configuration file and we will describe each option of the configuration.
Actually, the configuration file need to be stored on sd:/sciifii/ folder. Perhaps we will update
our app to use another device (but you will always need your sd to use bannerbomb or any
other hack).
Be carefull, every item in the configuration file is case sensitive.

Global structure
First, the root tag must be called “sciifii”. Sciifii is composed of logs, files, modes, options,
steps, a disclaimer and some options. Here is a table of the “sciifii” tag structure:
Name Element type Cardinality Type Format Remarks
Version Attribute 1 Int Decimal This must match the

Sciifii version. If not,
Sciifii will refuse it.

MenuMessage Attribute 0-1 String - This message will be
prompt on the menu.

AllowAdvancedModeAttribute 0-1 Bool true/false True is the default
value. If this is set to



false, the advanced
won’t be available.

workingDirectory Attribute 0-1 String usb:/ or
sd:/

This element will be
used as a temp
directory. All
downloaded files will be
putted here by default.
sd:/sciifii/temp is the
default value.

logs complex node0-1 log - See the log xml element
files complex node0-1 file - See the file xml

element.
modes complex node1 mode - See the mode xml

element.
options complex node1 option - See the option xml

element.
steps complex node1 - - See the description of

available steps.
Disclaimer node 0-1 String - This text will be

displayed in the
disclaimer

Log section
Now, it is possible to log what Sciifii does. There are actually three different versions of the
loggers: a file logger, a gecko logger and a web logger.
Three types of events are logged: errors, warnings and information. For the file and gecko
loggers, the logs are composed of strings (send to file or gecko).
But the web logger is quite different. It consists of an http call with some parameters. You
need to provide the page to call, but the parameters can’t be defined. If you want to create
your own web page you need to catch these parameters.
Name Element type Cardinality Type Format Remarks
type Attribute 1 String gecko

file
web

This defines the logger
type to use.

category Attribute 0-1 String error
warning
info
all

This indicates what kind
of message will be
logged by the logger.
“all” is the default value.

path Attribute 0-1 String usb:/ or
sd:/

This will be used by the
file logger in order to
create the log file.

url Attribute 0-1 String A valid
internet url
(http get)

Used by the web logger.
The parameters send to
the web page are: line,
message, file,
application and version.



Files section
In the v3 of Sciifii, we have created a file manager. The goal of this manager is to download
and store some required files. In the previous version of Sciifii, a lot of files were embedded
in the homebrew. This was a bad idea, because the dol became very heavy and we can’t
update Sciifii without recompiling it. The file manager is configured with the files section of
the configuration file. Each managed file is described with a “file” element in the files
section.
If the file needs to be downloaded, the FileManager can also validate it with the sha
algorithm.
If Sciifii asks for a file that isn’t in the FileManager, the file manager will try to find it using
the working directory and the key.
Here is a description of the attributes of the file element:
Attribute Type Cardinality Format Remarks
url String 1 a valid internet url This url will be used to download

the file
sha1 String 0-1 a valid internet url If provided, this url needs to be a

file containing the hash of the file
to be download.

key String 1 Don’t use / in this string This is a key used to get the file
from the file manager.

path String 0-1 sd:/ or usb:/ This is the full path were the file
need to be stored. If the file is
missing, the file manager will
download it.
If the path is not provided, Sciifii
will create the path like this:
workingDirectory/key

Modes section
This section will describe all the modes available on Sciifii. These modes will be displayed
in Sciifii menu. Each mode is represented by a mode element in the elements section.
Attribute Type Cardinality Format Remarks
text String 1 - This is the text displayed on screen
options String 1 A list of options name. Each option name must be separated

by |.
Every option in this attribute must
have a corresponding option in the
options section.

flag String 0-1 - This is a flag than can modify Sciifii
execution. Actually, the only flag
used is Uninstall.

Options section
The options are items we can switch on/off. These options are here to define the tasks need to
execute. The modes are custom sets of options. We can see the options to be switch on in the
options attribute of a mode element.



If the advanced mode is available, we will see in the advanced menu these options.
Attribute Type Cardinality Format Remarks
name String 1 - The name is the

identifier of an
option.

text String 1 - This text will be
displayed in the
advanced menu.

Steps section
This section is very important. It is in this section we will define all the tasks of the
sequencer. The number and the types of tasks have no limits.
So this chapter will detail every available step.
But, before starting the descriptions, you have to know that every step has an “option”
attribute. This attribute indicate to Sciifii what are the options that can switch on this task. If
one (or more) of this options are on, the task will be executed. If no option is defined, the task
will be always executed. This attribute is optional and the default value is an empty string.

TitleDowngrader
This task will downgrade an ios. In order to do that, it will start to install the latest ios version
and modify the tmd in the Wii temp folder to modify the ios revision to 0. After this
operation, we can install an ios with a higher version.
The tag name is “TitleDowngrader” and here is its content:
name element type cardinalitytype format Remarks
id attribute 1 u64 hexa, without 0x This is the title full id.
revision attribute 1 u16 decimal This is the wanted revision

IOS reloader
The IOS reloader indicates that Sciifii need to reload under another ios. There isn’t any
verification on the ios. So be sure that the ios isn’t a stub.
The tag is “IOSReloader” and here is the content description:
name element type cardinalitytype format Remarks
id attribute 1 u32 decimal This is the ios number (not the full id)
user attribute 0-1 u16 -1 or 0 This corresponds to an enum value.

-1 wich is the default value does
nothing.
0 will identify Sciifii as SU after the
reloading

Cios installer
This is the more complicated task. This task will allow you to patch an ios and install it on
your Wii. Near every cios can be done with this task. If you don’t really know what you are
doing, we suggest you to don’t use this.
A cios is composed of many items. First, the original ios is patched with some simple
patches. These patches will just replace a binary pattern by another one.



But a cios is also composed of plugins and additional modules. It is possible to insert them as
well. We don’t write this document to explain you how the hack is done, but how Sciifii
works. So we won’t deep furthermore into the ios hack.
Before installing the cios, this task will remove the existing ios (to avoid revision conflict).
So you need to be under an ios with enough privileges.
The cios installer tag is “CiosInstaller”:
name element type cardinality type format remarks
source attribute 1 u32 decimal This is the ios base

number
revision attribute 1 u16 decimal The ios base revision
slot attribute 1 u32 decimal The slot where to

install the cios
ciosRevision attribute 1 u16 decimal The revision of the

cios
modules complex node 0-1 module - This is the place

where you need to
describe all the
additional modules

plugins complex node 0-1 plugins - You need to put the
plugins here

patches complex node 0-1 various patches - patch list

Cios modules
A module is an elf file compiled with arm compiler. The specified modules will be inserted to
the ios and the task will do all manipulations job for you. This xml part is quite simple.
A modules tag is “module”:
name element type cardinality type format remarks
file attribute 1 string - It refer to a file manager item
position attribute 0-1 u16 decimal If the module needs a specific

position in the ios, you can specify
it.

Cios plugins
A plugin is a piece of code we insert in an existing module/elf. With Sciifii you can use what
we name additive plugins (the code will be added into the module as a new section or in an
existing section) or replacement plugins (the plugin will replace an entire module section).
We can make the distinction between the two different plugins type using the header tag. The
header tag will describe how we insert a new plugin. If the header tag isn’t provided, the
plugin will be inserted in an existing section.
We will describe the “plugin” tag, then we will try to explain how Sciifii detects the different
plugins type:
name element type cardinality type format remarks
dest attribute 1 string - The plugin will be applied on

the ios module specified in the
dest attribute (FFS ES, DI
etc…)



file attribute 1 string - Reference a file manager item
wich contains the plugin.

offset attribute 0-1 u64 hexa without
0x

This indicates the plugin
position in its section. The good
section will be automatically
found.

bss attribute 0-1 u64 hexa without
0x

This defines the new bss size.

segment attribute 0-1 u32 decimal It indicates wich section to
replace. 0 to create a new
section.

header node 0-1 - - This describe the program
header for the new section

handle node 0-n - - This is patches required to
enable the plugin.

The header node is very important. Sciifii use this to decide if the plugin is a piece of code to
include in an existing section or if the plugin is a full new section (a section is an elf part.
You can find it using power-pc-eabi-readelf –a file).
Is header defined?

The plugin will be added to an existing section.

Bss and offset are required.

No

The plugin is a full section.

segment is required.

Yes

Segment = 0 ?

New section

The section will be replaced.

Yes

No

Cios patches
This section is simple. Some usual patches are already defined in Sciifii. We call them
prebuild patches. You can insert them in the ios using the “prebuild” tag. You must provide
the name attribute to indicate the prebuild patch to use. Here is a list of prebuild patches:

· ES_HashCheck_Old
· ES_HashCheck_New
· ES_Identify
· ES_OpenTitleContent1
· ES_OpenTitleContent2
· ES_ReadContent
· ES_CloseContent
· ES_SetUIDCheck
· ES_TitleVersionCheck
· ES_TitleDeleteCheck



· ES_MEM2Protection
· FFS_PermsCheck
· DIP_UnencryptedLimit
· DIP_EnableDvdVideo
· KoreanKey_EnablePatch

But you can also define your own patches using the “SimplePatch” tag:
name element type cardinality type format remarks
module attribute 0-1 string This is a module name (ES, FFS

etc…). If provided, only this
module will be patched.

pattern attribute 1 data hexa (with 0x),
separated by comas

This pattern will indicate where to
apply the patch

patch attribute 1 data hexa (with 0x),
separated by comas

The patch must have the same
size as the pattern.

Composite installer
This task is very simple. This is only a task group. You can add (as child nodes) some tasks.
The goal of this item is to apply an option at a group of tasks. The better example is the
GXLoader installation.
You can provide a name to this task. The name will be used during the progression report.

Title task
This allows you to manipulate Wii titles. You can install wads, extract titles as wad, decrypt
tiles etc…
name element type cardinality type format remarks
action attribute 0-1 enum -install

-uninstall
-pack
-extract
-decrypt

Install (default): will install a wad
or a nus title, depends of the
source.
Uninstall: will uninstall a title
based on source information.
Pack: download a title from nus
and pack it as wad.
Extract: extract a title from the
Wii and pack it as wad.
Decrypt:Extract, decrypt and save
a title from the Wii.

wad attribute 0-1 string - Describe a wad source (file
manager). Used for Installation or
Uninstallation.

id attribute 0-1 u32 - This is a title id. It can be used
for for every action.

revision attribute 0-1 u16 - Used in Pack or Install. It is the
title revision (0 for the latest one).

path attribute 0-1 string file path (sd
or usb)

A wad path if Pack or a folder if
Decrypt.



Title installation can be done downloading titles from nus or extracting titles from wad. It
depends on the defined attribute. You mustn’t define the wad attribute and the id attribute
because Sciifii won’t be able to choose between nus and wad.
For the title uninstallation, it’s the same. The only difference is that Sciifii won’t download
any title from nus. We only need the titleId to delete it. If you provide a wad file, the title id
will be extracted from the wad.
In the other case, the wad attribute will not be used. If you need to define a wad path (for
example, with the Pack action), you need to use the path attribute.

File downloader
This task is very simple. The only goal of this task is to download a file managed by the file
manager.

Wad Batch installer
This task is very simple too. Sciifii will inspect the folder defined in the “folder” attribute of
the “WadBatchInstaller” tag, and it will install all these wads.

File system manipulation
We have created a special task to manipulate the file system (Wii and sd or usb using fat).
You can copy, move and delete files and folder.
name element type cardinality type format remarks
target attribute 1 string path -
destination attribute 0-1 string path -
type attribute 1 enum -file

-folder
This indicate if
target and
destination are
folders

recursive attribute 0-1 bool - Default value
is false. This is
used for
folders
manipulation
(copy/delete)

action attribute 1 enum -move
-copy
-delete

-

The move action will move the file or folder (the target) into the destination folder. If the
destination folder doesn’t exist, it will be created.
The copy action will do the same, except that the source won’t be deleted after the copy. For
folder copy, you can specify if the copy is recursive or not.
The delete action will delete the target directory or file. For folder deletion, you can use the
recursive attribute. If recursive is set to false and the folder isn’t empty, you will have an
error.
For the directory move or copy with recursive attribute, you can create the target folder in the
target directory.
Example:
Copy sd:/foo sd:/bar => will copy all the content of foo into bar
Copy sd:/foo/ sd:/bar => will copy foo into bar. So you will have sd:/bar/foo/content




	Introduction
	Changelog
	How to use Sciifii
	Prerequisites
	Installation methods
	Sciifii modes
	Sciifii options
	Error resolutions

	Sciifii customization
	Global structure
	Log section
	Files section
	Modes section
	Options section
	Steps section
	TitleDowngrader
	IOS reloader
	Cios installer
	Cios modules
	Cios plugins
	Cios patches

	Composite installer
	Title task
	File downloader
	Wad Batch installer
	File system manipulation



